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the aid of Eqs. (5) and (9) gives

9—q _,_ )+ 401+Te+21T)P? - T,
4 — qr 2(1 + Ty, + 21T)
(1)
where, for the stagnation region of axisymmetric bodies,
I, Pk o)Sc (12)

T (0.47) [2(poe)oBC M2

Equation (11) is a closed form solution that gives the heat
transfer ratio (¢ — ¢s)/(ge — ¢;) for arbitrary-rate simul-
taneous gas-phase and surface reactions.

The terms T, and I'w, defined by Egs. (8) and (12), are
essentially Damkhéler numbers representing the ratio of
characteristic diffusion time to characteristic chemical reac-
tion time for the gas-phase and surface reactions, respec-
tively.

Discussion

The accuracy of the solution, Eq. (11), cannot be checked
for the arbitrary combinations of T', and I',, because the gen-
eral exact solutions are not available. It can be established
that the equation gives correct results at the two limiting
cases of either 'y = 0 or Iy, = 0. It is sufficiently accurate
when T', = 0, because T', was obtained by matching the re-
sults with the solutions of Ref. 9. Tt is correct also when T,
= 0, because the solution (11) essentially becomes the solution
of Ref. 3. Though there is no direct check in the inter-
mediate region, it is felt that the physical reasoning leading to
the equivalent surface reaction concept of Eq. (10) is sound.
The excellent correlation shown for the gas-phase reaction
with noncatalytic surface appears to support the accuracy of
the results presented. '

The variation of (¢ — ¢s)/(gz — ¢,) with respect to I', and
T'., as given by Eq. (11), is seen in Fig. 1. The general be-
havior is similar to that for the Couette flow obtained in
Ref. 10.

It is noted here that the same problem considered here also
is being studied by Inger! from a different approach. In his
analysis the production term, or the source term, in the formal
diffusion equation is approximated by a simpler function re-
quiring only a correct matching near the surface. 1t is there-
fore based on a concept similar to that used herein in that the
chemical state near the surface is assumed to be of controlling
influence. It is still, however, an approximate analysis, and
the accuracies of any of these approximate analyses can be
checked only when exact solutions become available.

Conclusions

The concept of equivalent surface reaction has been de-
veloped for gas-phase recombination at the staghation region
of blunt bodies. This concept is based on the fact that the
chemical state of a nonequilibrium highly cooled boundary
layer is determined largely by the recombination that occurs
near the wall. An equation based on this concept was shown
to predict the heat transfer to a noncatalytic surface to within
a few percent of the more accurate existing results. The
equation was generalized to apply to the case in which surface
catalytic recombination oceurs simultaneously with gas-phase
reaction. The present solution, which is in a simple closed
form, should be useful in estimating heat transfer, although
the accuracy of the solution cannot be checked for the general
case, because of a lack of exact solutions. The atom con-
centration profile across the boundary layer can be obtained
from the value m,, obtained herein, since in a frozen boundary
layer the profile is determined when m,, is known (for instance,
see Ref. 3), and the present theory is, in essence, based on the
frozen boundary layer theory with modification only in the
boundary condition at the surface. The profile thus ob-
tained should approximate the true profile with the same de-
gree of accuracy as the heat transfer results. This profile, in
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turn, defines the chemical state across the boundary layer.
The equivalent surface reaction concept will be extended to
flow fields beyond the stagnation point of a blunt body.
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Subsonic Wing Span Efficiency

Ricuaro C. FrosT* AND ROBBIE RUTHERFORDT
General Dynamics/Fort Worth, Fort Worth, Tezx.

HE rather arbitrary manner in which subsonic wing span

efficiency often is selected has led to the development of
an empirical method by which a more realistic and consistent
value of efficiency can be determined. This method depends
on a parameter B that is defined as the ratio of the actual
chord force to the theoretical chord force with full leading-
edge suction; Risfound tobe a funetion of leading-edge-radius
Reynolds number. This note describes 1) the correla-
tion of R with Reynolds number, and 2) the method for ap-
plying the results.

Figure 1 shows the results of plotting R vs Reynolds number
with the characteristic length taken as the leading-edge radius
at the wing mean aerodynamic chord. All of the data are for
wings with symmetrical airfoils; R is determined as follows:

1) The drag at lift is given by

Crt/rRe = C, cosa + Cy sina (1)

With the usual assumption of small o and with Cy = Cp/cosw
Eq. (1) becomes

CL2/7I'1ZR€ = Cc + OLQ/OLa <2)
Received January 2, 1963.
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Table 1 Wind tunnel data used in R correlation
SYMBOL | NACA REF. AR A1irs NACA AIRFOIL REYNOLDS NO. X 107° MACH NO,
(DEGREES)
O RML51K26 3.78 49 65A006 2.9,4.4,5.2,6,1 0.10
JAN RMAS53A30 2.0 45 0003-63 8.0,1.9,4.8 0.61,.24
0005-63
0008-63
O RMA51D02 3.0 48.5 64A010 2.0,4,0,8.0,12.0,18.0 0.24
\V/ RMA51G31 | 3.0 48,5 644010 4.0,6.0,8.0,12.0,18.0 0.25,.60
<> RML53F24 2.31 60 65A002 5.7 0.17
65A006
RML52A29 2.0 47 65A006 3.32,4.52 0.40,.60
4.0 2.04,2.77 0.40,.60
6.0 1.58,2,13 0.40,.60
> RMAS53C20 2.0 56.31 0005-63 3.0 0.24,.61
C | ruAsOK27 | 10.0 35 65,4012 2.0,4.0,6.0,10.0 0.25
® 5.0 35 65,4012 2.0,4,0,6.0,10.0 0.25
} RML52K21 4,0 45 65A006 1.62 0.40,.60
\ 4 TN 4397 2.0 60 65A008 1.02 0.13
v 4.0 0.72
v 6.0 0.59
X RML51H13 8.0 46,33 63,A012 1.62,2.2,3.0,4.8 0.07-+0.25
2 RMA50AQ4a | 2.0 63.43 0005 (MOD) 15.3 0.13
%) RML56G02 3.7 45 At /c = .086 0.93 0.06
<> RML50F16 4.0 45 65A006 1.5,3.0,4.5 0.20
X RML51J04 8.0 45 63,A012 1.5,2.2,3.0,4.0 0.19
RML56A10 3.7 47.8 t/c = ,083—090| 1.8 0.13
% RMA8D20 3.5 63 64A006 3.55 0.16,.30,.60
‘ RML53E20 4.0 45 65A006 1.90 - 3.0 0.40,.50,.60 |
' RMAS54320 3.0 53.1 0003-63 3.0 0.62
< TN 3529 4.0 27 63A008 1.7 (1.4—2.0) 0.60
18 63A006
15 63A004
D> RMA53J14a 3.0 53.1 0003-63 3.8 0.60
pYa RMA55D11 3.0 45 64A006 2.90 0.60
A RMA50K20 2.0 63.43 0008-63 3.0,5.0 0.60
g RMA51D27 5.0 43 64A010 2,3,4,6,10 0.25,.40
o RMASDO2 3.5 63 64A006 8.0 0.125
2 Not standard NACA sections.
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or the chord force from Eq. (2) is given by
C. = C2[(1/7Re) — (1/CLa)] 3

2) Theoretically, with full leading-edge suction and
elliptic span loading, the wing span efficiency e becomes 1.0,
and Eq. (3) reads

C. = C?[(1/xR) — (1/Cra)] @

This quantity was computed using wind tunnel results ob-
tained on a large number of wings with a broad range of sweep
angles, aspect ratios, taper ratios, thickness ratios, and
Reynolds numbers as indicated in Table 1. The correlation
of Fig. 1 was terminated at 0.6 Mach, where effects due to
compressibility began to appear in the data.

The results show a very well-defined trend of increasing B
with increasing leading-edge-radius Reynolds number. No
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consistent variations due to the geometric parameters are
evident in the scatter about the faired curve. Hence, it is
concluded that the curve is a good statistical average with the
scatter being similar to results obtained when investigating
other viscous phenomena.

The curve of Fig. 1 can be used directly to predict the span
efficiency of wings, or it can be used as a guide to extrapolate
results from wind tunnel tests to tull scale. It is especially
useful in this regard when model data are available on an
actual design where some of the leading-edge suction may be
eliminated. For example, fuselages, nacelles, or other com-
ponents may blanket the wing leading edge locally, thus pre-
venting the possibility of developing suction in such regions.

Above a leading-edge-radius Reynolds number of 100,000,
it has become customary to use B = 0.95. Upon checking, it
was found that this value yields span efficiencies that closely
agree with an empirical method used by Sheridan! for full-
scale aircraft.

The span efficiency ¢ may be computed from Eq. (5) as
follows:

— (CLQ/LZR’)
R(Cra/R) + (1 — R)m

(6)

€

This expression is plotted in Fig. 2. The significance of the
results now becomes apparent. For example, for a fixed
value of R, e increases as the ratio of Cr,/A increases.
Thus, the wing that produces more Cr, per unit aspect ratio
will have a higher span efficiency. This fact becomes im-
portant in design work and makes the selection of a wing
planform and airfoil section take on well-defined significance,
since the wing planform geometry is implicit in the value of
CrLa.

The approach of this note with suitable modifications could
be extended to higher Mach numbers, including supersonic
Mach numbers for wings with subsonic leading edges.

! Sheridan, H. G., “Aireraft preliminary design methods used
in the Weapons System Analysis Division,” Navy Dept., Bur.
Naval Weapons Rept. R-5-62-13 (June 1962).

Approximate Method for Calculating

the Compressible Laminar Boundary

Layer with Continuously Distributed
Suction

W. Prcuav*
Institute of Fluid Mechanics of the Technical University,
Braunschwetg, Germany

ONTROL of the compressible laminar boundary layer

by continuously distributed suction may be employed

on airfoils either at small angles of incidence to avoid transi-

tion to turbulence and thus to reduce skin friction or at larger

angles of incidence to prevent separation and thus to increase

the maximum lift. The presumed existence of a laminar

boundary layer on the impermeable wall is based on the re-

duction of density with altitude, so that even at high speeds

requiring the consideration of compressibility the critical
Reynolds number is not exceeded.
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A rational calculation of compressible boundary layers can
be achieved only by an approximation of the Pohlhausen type.
Whereas for impermeable walls some integral methods are
available,! no method of general validity for the case of suc-
tion or blowing has been established as yet. In a recent
paper? a method was presented which has, for the present,
been restricted to the special case of an adiabatic wall and a
Prandtl number of unity, because for this case a universal
relationship between the velocity and temperature profiles
exists. In this note a brief account of the method is given.

The method is based on the momentum-integral equation
with a pertaining compatibility condition at the wall.? The
assumption for the velocity profile is of a form

u(@,y)/Uex) = fln(z,y), K@)] n
Here K(z) is a shape factor of the profiles and
R y
1= )2t @

with 6;(x) denoting a scale factor proportional to the local
boundary layer thickness. The velocity profile used here
is composed of an exponential term that reproduces the
asymptotic suction profile correctly and a sine term that
well approximates the flat-plate profile without suction. The
same analytic expression had been used by Schlichting? for
the incompressible case.

After the introduction of Eq. (1) into the momentum-
integral equation, the momentum-loss thickness

8= [~ <1—i)dy 3)

in the substituted form
Z* = (¢/DXR/D(Usl/ve)
is caleulated from the equation
dZ*/dx* = Fi(x*)-G(k,ky) + Faolz*)-k
with

k = Fs(z*)-Z* k= F4(x*)(z*)1/2 (6)

The quantities F, to Fs are explicit functions of the co-
ordinate z* = 2/l along the chord, which implies a dependence
on the external velocity U.(z), the local Mach number M .(x),
the radius of curvature R(z), and, for F4, on the suction ve-
locity v,(z). The shape factor K(z) occurring in Eq. (1) is
obtained from a relation

K = K(k,k) @)

Having thus determined the velocity profile for each posi-
tion z, the other characteristic parameters such as displace-
ment thickness and skin friction are evaluated easily. The
temperature profile is connected with the velocity profile
through the general relation just mentioned. For incom-
pressible flow, the method reduces to the one given by
Schlichting.*

The practical computation is complicated by the fact that
the quantity G(k,k,) occurring in Eq. (5) is not an explicit
function of % and k. Therefore, Truckenbrodt® introduced
a linearized form of this function into the incompressible
method of Schlichting. Employing such a linearization here
also, one obtains, instead of Eq. (5),

dY*/dz* = A(z*) — B(x*) (V)2 (8)
with

3\2 /U.\¢ /R\2 /T.\12@—»/x=D] [_]
[ — — _ i —_—
= () () () () 2o

The quantities 4 and B are explicit functions of U.(x), M.(2),




